Group-Theoretic Analysis of Cayley-Graph-Based Cycle GF(2) Codes

نویسندگان

  • Jie Huang
  • Shengli Zhou
  • Jinkang Zhu
  • Olgica Milenkovic
چکیده

Using group theory, we analyze cycle GF(2) codes that use Cayley graphs as their associated graphs. First, we show that through row and column permutations the parity check matrix H can be put in a concatenation form of row-permuted block-diagonal matrices. Encoding utilizing this form can be performed in linear time and in parallel. Second, we derive a rule to determine the nonzero entries of H and present determinate and semi-determinate codes. Our simulations show that the determinate and semi-determinate codes have better performance than codes with randomly generated nonzero entries for GF(16) and GF(64), and have similar performance for GF(256). The constructed determinate and semi-determinate codes over GF(64) and GF(256) can outperform the binary irregular counterparts of the same block lengths. One distinct advantage for determinate and semi-determinate codes is that they greatly reduce the storage cost of H for decoding. The results in this correspondence are appealing for the implementation of efficient encoders and decoders for this class of promising LDPC codes, especially when the block length is large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group-theoretic analysis of cayley-graph-based cycle gf(2p) codes

Using group theory, we analyze cycle GF(2) codes that use Cayley graphs as their associated graphs. First, we show that through row and column permutations the parity check matrix H can be put in a concatenation form of row-permuted block-diagonal matrices. Encoding utilizing this form can be performed in linear time and in parallel. Second, we derive a rule to determine the nonzero entries of ...

متن کامل

A module theoretic approach to‎ ‎zero-divisor graph with respect to (first) dual

Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...

متن کامل

Linear codes with complementary duals related to the complement of the Higman-Sims graph

‎In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7‎, ‎11$ defined by the 3‎- ‎7‎- ‎and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100‎. ‎With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes ha...

متن کامل

Cayley DHTs - A Group-Theoretic Framework for Analyzing DHTs Based on Cayley Graphs

Static DHT topologies influence important features of such DHTs such as scalability, communication load balancing, routing efficiency and fault tolerance. Nevertheless, it is commonly recognized that the primary difficulty in designing DHT is not in static DHT topologies, but in the dynamic DHT algorithm which adapts various static DHT topologies to a dynamic network at Internet. As a direct co...

متن کامل

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008